首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   110篇
  国内免费   64篇
测绘学   18篇
大气科学   34篇
地球物理   207篇
地质学   137篇
海洋学   106篇
天文学   15篇
综合类   33篇
自然地理   44篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   13篇
  2019年   9篇
  2018年   13篇
  2017年   20篇
  2016年   26篇
  2015年   28篇
  2014年   24篇
  2013年   26篇
  2012年   26篇
  2011年   27篇
  2010年   26篇
  2009年   37篇
  2008年   19篇
  2007年   28篇
  2006年   32篇
  2005年   17篇
  2004年   28篇
  2003年   26篇
  2002年   15篇
  2001年   21篇
  2000年   9篇
  1999年   30篇
  1998年   12篇
  1997年   7篇
  1996年   11篇
  1995年   7篇
  1994年   11篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有594条查询结果,搜索用时 31 毫秒
31.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
32.
Coasts composed of resistant lithologies such as granite are generally highly resistant to erosion. They tend to evolve over multiple sea level cycles with highstands acting to remove subaerially weathered material. This often results in a landscape dominated by plunging cliffs with shore platforms rarely occurring. The long‐term evolution of these landforms means that throughout the Quaternary these coasts have been variably exposed to different sea level elevations which means erosion may have been concentrated at different elevations from today. Investigations of the submarine landscape of granitic coasts have however been hindered by an inability to accurately image the nearshore morphology. Only with the advent of multibeam sonar and aerial laser surveying can topographic data now be seamlessly collected from above and below sea level. This study tests the utility of these techniques and finds that very accurate measurements can be made of the nearshore thereby allowing researchers to study the submarine profile with the same accuracy as the subaerial profile. From a combination of terrestrial and marine LiDAR data with multibeam sonar data, it is found that the morphology of granite domes is virtually unaffected by erosion at sea level. It appears that evolution of these landscapes on the coast is a very slow process with modern sea level acting only to remove subaerially weathered debris. The size and orientation of the joints determines the erosional potential of the granite. Where joints are densely spaced (<2 m apart) or the bedrock is highly weathered can semi‐horizontal surfaces form. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
33.
This paper presents an innovative set of high‐seismic‐resistant structural systems termed Advanced Flag‐Shaped (AFS) systems, where self‐centering elements are used with combinations of various alternative energy dissipation elements (hysteretic, viscous or visco‐elasto‐plastic) in series and/or in parallel. AFS systems is developed using the rationale of combining velocity‐dependent with displacement‐dependent energy dissipation for self‐centering systems, particularly to counteract near‐fault earthquakes. Non‐linear time‐history analyses (NLTHA) on a set of four single‐degree‐of‐freedom (SDOF) systems under a suite of 20 far‐field and 20 near‐fault ground motions are used to compare the seismic performance of AFS systems with the conventional systems. It is shown that AFS systems with a combination in parallel of hysteretic and viscous energy dissipations achieved greater performance in terms of the three performance indices. Furthermore, the use of friction slip in series of viscous energy dissipation is shown to limit the peak response acceleration and induced base‐shear. An extensive parametric analysis is carried out to investigate the influence of two design parameters, λ1 and λ2 on the response of SDOF AFS systems with initial periods ranging from 0.2 to 3.0 s and with various strength levels when subjected to far‐field and near‐fault earthquakes. For the design of self‐centering systems with combined hysteretic and viscous energy dissipation (AFS) systems, λ1 is recommended to be in the range of 0.8–1.6 while λ2 to be between 0.25 and 0.75 to ensure sufficient self‐centering and energy dissipation capacities, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
34.
根据临汾地震台石英摆、垂直摆、宽带垂直摆3套摆式倾斜仪器的观测资料,对山西中南部几次中等地震进行分析,发现在地震前各仪器同测向曲线有一定的异常反映,但异常并非呈相关一致性变化,有的还表现出明显的差异性特征;在同一台址条件下,异常的差异性与仪器的工作周期、动态响应范围、记录频段等有关;河津地震前后宽带垂直摆倾斜仪记录到的连续阶跃扰动(错位掉格)可能是慢地震现象,由此说明了宽频段仪器的优越性及发展性;建议在形变台网观测中,同一台站应建立宽频或多种同类型的形变观测仪器,组成尽量具有低、中、高频段的全面观测系统,这可能对于扑捉近震的短临前兆异常有实效意义.  相似文献   
35.
复杂近地表条件会降低地震数据的质量,通常采用基于地表一致性的时移静校正消除其影响.但静校正与速度是密不可分的,而确定复杂近地表速度是非常困难的.基于CFP技术处理复杂近地表问题时避免了对速度的直接操作,使得静校正和速度的确定相互独立.首先根据叠前数据估算出波场的传播算子,然后依据等时原理在DTS模板中进行算子更新,再用这些更新的算子重建基准面和实现近地表单程时间成像.获得正确的算子振幅也是重建基准面的关键.  相似文献   
36.
兰州附近的庄浪河断裂和白银白杨树沟断裂是对兰州市地震安全有一定影响的晚第四纪活动断裂,但沿断裂发生的中强破坏性地震较为复杂甚至不明确。如何评价西部地区此类断裂的最大潜在地震震级及其危险性是地震中长期预测和地震区划研究中较为重要的问题之一。本文借鉴闻学泽等(2007)对中国大陆东部中-弱活断层潜在地震最大震级评估的思路,建立了兰州地区最大地震震级Mmax与断层小区震级-频度关系参数at/b值之间的经验公式;并采用经验公式外推得到庄浪河断裂和白杨树沟断裂的震级上限Mu分别为MS6.9、6.3,进而评估了这两条断裂的地震平均复发间隔和发震概率。  相似文献   
37.
开采倾斜近地表矿体地表及围岩变形陷落的模型试验研究   总被引:4,自引:4,他引:0  
以某铜矿矿山一典型地质剖面为原型,运用物理概化模型试验,采用网格数字摄影测量方法量测模型剖面全场位移,分析了开采倾斜近地表矿体地表及围岩变形陷落随不同开挖步的变化规律。在模型试验中,开挖-75 m~-45 m之间的矿体,围岩扰动范围及地表下沉位移逐渐增大,第7步开挖完成后,采空区上方岩体开始出现离层,第9步开挖完成后,地表1~4测点之间形成一明显沉陷盆地,最大下沉位移达825 mm。模型试验研究的结果与现场及离散元数值计算结果基本吻合。  相似文献   
38.
Residual displacements of single‐degree‐of‐freedom systems due to ground motions with velocity pulses or fling step displacements are presented as a function of period T and of its ratio to the pulse period Tp. Four hysteretic behaviors are considered: bilinear elastoplastic, stiffness‐degrading with cycling, stiffness‐cum‐strength degrading, with or without pinching. When expressed in terms of T/Tp, peak inelastic and residual displacements due to motions with a pulse or fling appear similar to those due to far‐fault motions, if the response to far‐field records are expressed in terms of the ratio of T to the record's characteristic period. However, as the latter is usually much shorter than the pulse period of motions with fling, the range of periods of interest for common structures becomes a short‐period range under fling motions and exhibits very large amplification of residual and peak inelastic displacements. Similar, but less acute, are the effects of motions with a velocity pulse. Wavelets of different complexity are studied as approximations to near‐fault records. Simple two‐parameter wavelets for fling motions overestimate peak inelastic displacements; those for pulse‐type motions overestimate residual displacements. A more complex four‐parameter wavelet for motions with a velocity pulse predicts overall well residual and peak displacements due to either pulse‐ or fling‐type motions; a hard‐to‐identify parameter of the wavelet impacts little computed residual displacements; another significantly affects them and should be carefully estimated from the record. Even this most successful of wavelets overpredicts residual displacements for the periods of engineering interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
39.
The sediment saturation recovery process (i.e. the adaptation of suspended sediment concentration [SSC] to local forcing) is the main feature of the non‐equilibrium suspended sediment transport (SST) frequently occurring in fluvial, estuarine and coastal waters. In order to quantitatively describe this phenomenon, a series solution is analytically derived, including the evolution of both vertical SSC profile and near‐bed sediment flux (NBSF), and is verified by net erosion and net deposition experiments, respectively. The results suggest that the sediment saturation recovery process involves vertically varying fluxes that are not represented correctly by depth‐averaging. Consequently, a vertical two‐dimensional (2D) combined scheme is established and applied respectively in to a dredged trench and to a sand wave feature to demonstrate this argument. By analyzing the variations of the calculated depth‐averaged SSC and NBSF we reveal that the equilibrium state presented by the sediment carrying capacity (SCC) form of the NBSF, which is usually applied in depth‐integrated SST models, lags behind the actual dynamic bed equilibrium state. Moreover, the key factor α, the so‐called saturation recovery coefficient within this form, is not only a function of local Rouse number but also is influenced by the local SSC profile. Finally, a three‐dimensional (3D) non‐orthogonal curvilinear body‐fitted SST model is developed and validated in the Yangtze estuary, China, combined with the in situ hourly hydrographic data from August 14–15, 2007 during spring tide in the wet season. Model results confirm that the vertically varying sediment saturation recovery process, the discrepancies between the actual and SCC form of NBSF and non‐constant value of α are significant in actual real geomorphic cases. The quantitative morphological change resulting from variations in environmental conditions may not be correctly represented by uncorrected depth‐integrated SST models if they do not treat the effects of vertical motion on the sediment saturation recovery process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
40.
WorldView-2近红外光谱波段反演马尾松植被信息的比较研究   总被引:1,自引:0,他引:1  
WorldView-2卫星自2009年发射至今,已为用户提供了大量高性能的影像产品。与众多高分辨率卫星影像不同,WorldView-2有2个近红外波段,即近红外1(Near-infrared1,NIR1)和近红外2(Near-infrared2,NIR2),但目前这2个波段在应用上的区别并不清楚。因此,本文以福建省长汀县河田地区的马尾松林为例,采用NIR1和NIR2这2个近红外波段分别构建了3种植被指数(NDVI、ARVI和NDMVI),以探索二者在植被信息反演方面的差异。结果表明,NIR1构建的植被指数在马尾松林提取精度上高于NIR2,并具有更丰富的植被信息量。经统计可知,NIR1所构建的植被指数信息量比NIR2分别大8.0%(NDVI)、12.3%(ARVI)和7.3%(NDMVI);在反演植被覆盖度方面,NIR1也比NIR2具有更高的精度,其模拟的植被覆盖度与实际植被覆盖度的拟合度更高,误差更小。NIR1和NIR2所表现出的差异是因为马尾松在这2个近红外波段的光谱反射不同,其反射在NIR1的波长范围内达到最强,而在NIR2的波长范围内则出现了小幅下降。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号